5.0 0.5 4 12

Как найти периметр и площадь?

Елена Мельниченко
Елена Мельниченко
16 февраля 2015
7681
Оцените:
Как найти периметр и площадь?

Интересно, что много лет назад такой раздел математики, как «геометрия» называли «землемерием». И о том, как найти периметр и площадь, известно уже давно. К примеру, говорят, что самыми первыми вычислителями этих двух величин являются жители Египта. Благодаря таким знаниям они могли строить известные сегодня сооружения.

Умение находить площадь и периметр может пригодиться в повседневной жизни. В быту данные величины используются, когда необходимо что-либо покрасить, засадить или обработать сад, поклеить в комнате обои и т. п.

Периметр

Чаще всего необходимо узнать периметр многоугольников или треугольников. Чтобы определить эту величину, достаточно лишь знать длины всех сторон, а периметр составляет их сумму. Найти периметр, если известна площадь, также возможно.

Треугольник

Если необходимо знать периметр треугольника, для его вычисления стоит применить такую формулу P = а + b + с, где а, b, с - стороны треугольника. В этом случае все стороны обычного треугольника на плоскости суммируются.

Круг

Периметр круга обычно принято называть длиной окружности. Чтобы узнать данную величину, необходимо использовать формулу: L = π*D = 2*π*r, где L- длина окружности, r - радиус, D - диаметр, а число π, как известно, примерно равно 3,14.

Квадрат, ромб

Формулы для периметров квадрата и ромба одинаковы, потому что и у одной фигуры, и у другой все стороны равны. Поскольку квадрат и ромб имеют равные стороны, то их (стороны) можно обозначить одной буквой «а». Получается, периметр квадрата и ромба равен:

  • Р = а + а + а + а или Р = 4а

Прямоугольник, параллелограмм

У прямоугольника и параллелограмма противолежащие стороны одинаковы, поэтому их можно обозначить двумя разными буквами «а» и «b». Формула выглядит так:

  • Р = а + b + а + b = 2а + 2b. Двойку можно вывести за скобки, и получится такая формула: Р = 2 (а+b)

Трапеция

У трапеции все стороны разные, поэтому их обозначают разными буквами латинского алфавита. В связи с этим формула для периметра трапеции выглядит так:

  • Р = а + b + с + d Здесь все стороны суммируются вместе.

Дополнительно о вычислении периметра можно узнать из статьи Как найти периметр.

Площадь

Площадь – та часть фигуры, которая заключена внутри ее контура.

Прямоугольник

Чтобы вычислить площадь прямоугольника, необходимо умножить значение одной стороны (длины) на значение другой (ширины). Если значения длины и ширины обозначаются буквами «а» и «b», то площадь вычисляется по формуле:

  • S = а*b

Квадрат

Как уже известно, стороны квадрата равны, поэтому для вычисления площади можно просто взять одну сторону в квадрат:

  • S = а*а = a2

Ромб

Формула нахождения площади ромба имеет немного другой вид: S = a*ha, где ha – это длина высоты ромба, которая проведена к стороне.

Кроме того, площадь ромба можно узнать по формулам:

  • S = a2*sin α, при этом а является стороной фигуры, а угол α - угол между сторонами;
  • S = 4r2/sin α, где r - радиус вписанной в ромб окружности, а угол α - угол между сторонами.

Круг

Площадь круга также узнается легко. Для этого можно использовать формулу:

  • S = πR2, где R - радиус.

Трапеция

Чтобы вычислить площадь трапеции, можно воспользоваться данной формулой:

  • S = 1/2*a*b*h, где a, b - основания трапеции, h - высота.

Треугольник

Для нахождения площади треугольника воспользуйтесь одной из нескольких формул:

  • S = 1/2*a*b sin α (где а, b - стороны треугольника, а α - угол между ними);
  • S = 1/2 a*h (где а - основание треугольника, h - опущенная к нему высота);
  • S = abc/4R (где a, b, c - стороны треугольника, а R - радиус описанной окружности);
  • S = p*r (где p - полупериметр, r - радиус вписанной окружности);
  • S= √ (p*(p-a)*(p-b)*(p-c)) (где p - полупериметр, a, b, c - стороны треугольника).

Параллелограмм

Для вычисления площади данной фигуры необходимо подставить значения в одну из формул:

  • S = a*b*sin α (где а, b - основания параллелограмма, α - угол между сторонами);
  • S = a*ha (где a - сторона параллелограмма, ha – это высота параллелограмма, которая опущена к стороне а);
  • S = 1/2 *d*D* sin α (где d и D - диагонали параллелограмма, α - угол между ними).
Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!