5.0 0.5 3 25

Как найти вершину треугольника?

Галина Девяткина
Галина Девяткина
15 октября 2014
2733
Оцените:
Как найти вершину треугольника?

Для того чтобы найти координаты вершины равностороннего треугольника, если известны координаты двух других его вершин, нужно воспользоваться одним из предложенных способов.

1 способ (графический)

  1. В системе координат отмечаем две заданные вершины.Треугольник
  2. Ставим ножку циркуля в одну из построенных точек.
  3. Проводим окружность с радиусом, равным расстоянию между отмеченными вершинами.
  4. Таким же образом чертим вторую окружность с тем же радиусом, но из второй отмеченной точки.
  5. Точки пересечения проведённых окружностей определяют вершины треугольников (их получится два).
  6. Определяем координаты полученных точек, исходя из полученного чертежа.

Данный способ позволяет точно построить третью вершину. Однако определение координат является приблизительным. Метод хорошо использовать для иллюстрации.

2 способ (аналитический)

Решение задачи основано на применении формулы нахождения расстояния между двумя точками: d(A(x1;y1);B(x2;y2))=√((x2-x1)^2+(y2-y1)^2)

  1. Пусть имеются вершины A(x1;y1) и B(x2;y2) треугольника АВС. Обозначим координаты третьей вершины x и y (то есть, С(x;y))
  2. Составляем соотношения
    AC=√((x-x1)^2+(y-y1)^2)
    BC=√((x-x2)^2+(y-y2)^2)
    AB=√((x2-x1)^2+(y2-y1)^2)
  3. Учитывая, что треугольник равносторонний, составляем систему уравнений:
    AC=BC
    AC=AB
    Или система уравнений:
    √((x-x1)^2+(y-y1)^2)= √((x-x2)^2+(y-y2)^2)
    √((x-x1)^2+(y-y1)^2)= √((x2-x1)^2+(y2-y1)^2)
  4. Методом подстановки решаем полученную систему.

Теперь вы знаете, как найти вершину треугольника.

Внимание! Оба случая применимы только для равностороннего треугольника.
Для равнобедренного или любого другого произвольного треугольника для нахождения координат третьей вершины требуются дополнительные данные (например, значение некоторых отрезков или углов).

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!