5.0 0.5 5 33

Как найти площадь поверхности куба?

Любовь Полищук
Любовь Полищук
29 января 2013
31879
Оцените:
Как найти площадь поверхности куба?

Куб представляет собой объемный вариант квадрата. Зная длину ребра куба (а), можно воспользоваться наиболее распространенной формулой по определению площади поверхности (S). Исходя из того, что площадь квадрата соответствует длине возведенной в квадрат грани, и у куба их шесть, получается: S = 6∙a². Эта формула определяет площадь полной поверхности куба.

Способы определения площади куба

  1. Если задан объем (V) пространства, что ограничен сторонами куба, а длина ребра неизвестна, то площадь (S) определяется таким образом.

    Когда единственно известная величина фигуры, представляет собой возведенную в третью степень длину ребра, тогда размер длины стороны каждой грани куба определяют посредством извлечения кубического корня из имеющегося параметра. Формула площади поверхности куба имеет вид: S = 6∙(³√V)².

  2. Когда задана длина диагонали гексаэдра (L), тогда длину одной грани можно легко вычислить, а вместе с ней и площадь фигуры. Диагональ определяют так: L/v3. А площадь куба поэтому вычисляется так: S = 6∙(L/√3)² = 2∙L², что очень удобно при расчетах.
  3. Как найти площадь поверхности куба, когда указан радиус описанной около гексаэдра сферы (R)? Просто! Необходимо только применить формулу такую: S = 8∙R²= 2∙(2∙R)².  Такое возможно благодаря тому, что диагональ куба соответствует параметру диаметра сферы.
  4. Зная радиус вписанной в гексаэдр окружности, формулу площади поверхности куба записывают так: S = 24∙r².

Площадь боковой поверхности куба

S = s1+s2+s3+s4, в которой слагаемые представляют собой площади четырех параллелограммов соответственно, которые образуют боковую поверхность параллелепипеда.

Формула площади боковой поверхности куба может быть представлена как S = P•h при условии, что задан прямой параллелепипед, с известным периметром основания P и высотой h.

Когда расчеты нужно провести по прямоугольному параллелепипеду (все его грани - прямоугольники), с  известными длинами сторон основания (d и c), когда как k - боковое ребро фигуры, тогда площадь боковой поверхности куба определяют как: S = 2•k•(d+c).

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!