5.0 0.5 4 25

Как найти параболу?

Юлия Чмыхало
Юлия Чмыхало
15 февраля 2013
7278
Оцените:
Как найти параболу?

Параболой является график квадратичной функции. Данная линия обладает весомым физическим значением. Для того чтобы легче было найти вершину параболы, нужно ее нарисовать. Тогда на графике с легкостью можно будет увидеть ее вершину. Но чтобы построить параболу, необходимо знать, как найти точки параболы и как найти координаты параболы.

Находим точки и вершину параболы

В общем представлении квадратичная функция имеет следующий вид: y = ax2+ bx + c. Графиком данного уравнения является парабола. При значении а › 0, ее ветви направлены вверх, а при значении а ‹ 0 – вниз. Для построения параболы на графике необходимо знать три точки, если она проходит вдоль оси ординат. В противном случае, должно быть известно четыре точки построения.

При нахождении абсциссы (х) необходимо взять коэффициент при (х) из заданной формулы многочлена, а затем разделить на удвоенный коэффициент при (x2), после чего умножить на число – 1.

Для того чтобы найти ординату необходимо найти дискриминант, затем умножить его на – 1, после чего разделить на коэффициент при (x2), предварительно умножив его на 4.

Далее, подставляя численные значения, вычисляется вершина параболы. Для всех расчетов желательно использовать инженерный калькулятор, а при черчении графиков и парабол пользоваться линейкой и люмографом, это позволит значительно повысить точность ваших расчетов.

Рассмотрим следующий пример, который поможет нам понять, как найти вершину параболы.

x2-9=0. В данном случае координаты вершины рассчитываются следующим образом: точка 1 (-0/(2*1); точка 2 -(0^2-4*1*(-9))/(4*1)). Таким образом, координатами вершины являются значения (0; 9).

Находим абсциссу вершины

После того, как вы узнали, как найти параболу, и можете рассчитать точки ее пересечения с осью координат (х), можно легко вычислить абсциссу вершины.

Пусть (x1) и (х2) являются корнями параболы. Корни параболы – это точки ее пересечения с осью абсцисс. Данные значения обращают в ноль квадратное уравнение следующего вида: ax2 + bx + c.

При этом |x2| > |x1|, значит вершина параболы расположена посередине между ними. Таким образом, ее можно найти по следующему выражению: x0 = ½(|x2| - |x1|).

Находим площадь фигуры

Для нахождения площади фигуры на координатной плоскости нужно знать интеграл. А чтобы применить его, достаточно знать определенные алгоритмы. Для того чтобы найти площадь, ограниченную параболами, необходимо произвести ее изображение в декартовой системе координат.

Вначале, по описанному выше методу, определяется координата вершины оси (х), затем оси (у), после чего находится вершина параболы. Теперь следует определить пределы интегрирования. Как правило, они указываются в условии задачи при помощи переменных (а) и (b). Данные значения следует поместить в верхнюю и нижнюю части интеграла соответственно. Далее следует вписать в общем виде значение функции и умножить его на (dx). В случае с параболой: (x2)dx.

Затем нужно вычислить в общем виде первообразное значение функции. Для этого следует воспользоваться специальной таблицей значений. Подставляя туда пределы интегрирования, находится разность. Данная разность и будет являться площадью.

В качестве примера рассмотрим систему уравнений: у = x2+1 и х+у=3.

Находятся абсциссы точек пересечения: х1=-2 и х2=1.

Полагаем, что у2=3, а у1=x2 + 1, подставляем значения в вышеприведенную формулу и получаем значение равное 4,5.

Теперь мы узнали как найти параболу, а также, основываясь на этих данных, рассчитать площадь фигуры, которую она ограничивает.

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!