5.0 0.5 3 35

Как построить вектор?

Кира Добровольская
Кира Добровольская
19 февраля 2013
8997
Оцените:
Как построить вектор?

Вектором принято называть отрезок, который имеет заданное направление. Как начало, так и конец вектора имеют фиксированную позицию, с помощью которых и определяется направление вектора. Рассмотрим подробнее, как построить вектор по заданным координатам.

  1. Начертить систему координат (x, y, z) в пространстве, отметить на осях единичные отрезки.
  2. Отложить на двух осях нужные координаты, провести от них пунктиром линии, параллельные осям, до пересечения. Поучится точка пересечения, которую нужно соединить пунктиром с началом координат.
  3. Провести вектор из начала координат до полученной точки.
  4. Отложить на третьей оси нужное число, через данную точку провести пунктирную линию, которая будет параллельна построенному вектору.
  5. Из конца вектора провести пунктиром линию, параллельную третьей оси до пересечения с линией из прошлого пункта.
  6. В завершении соединить начало координат и полученную точку.

Иногда требуется построить вектор, который будет результатом сложения или вычитания других векторов. Поэтому сейчас мы рассмотрим операции с векторами, узнаем, как их складывать и вычитать. 

Операции над вектором

Геометрические векторы можно складывать несколькими способами. Так, например, наиболее распространенным способом сложения векторов является правило треугольника. Чтобы сложить два вектора по этому правилу, необходимо расположить векторы параллельно друг другу таким образом, чтобы начало первого вектора совпадало с концом второго, при этом третья сторона полученного треугольника будет являться вектором суммы.

Также можно рассчитать сумму векторов по правилу параллелограмма. Векторы должны начинаться из одной точки, параллельно каждому вектору нужно начертить линию так, чтобы в итоге получился параллелограмм. Диагональ построенного параллелограмма будет являться суммой этих векторов.

Для вычитания двух векторов нужно сложить первый вектор и вектор, который будет противоположным второму. Для этого также используется правило треугольника, которое имеет следующую формулировку: разность векторов, которые перенесены таким образом, что их начала совпадают, является вектором, начало которого совпадает с концом вычитаемого вектора, а также с концом уменьшаемого вектора.

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!