5.0 0.5 5.0 11

Что такое уравнение?

Юрий Белоусиков
Юрий Белоусиков
11 ноября 2014
16465
Оцените:
Что такое уравнение?

Смотрите видео

Что такое уравнение?

Тем, кто делает первые шаги в алгебре, конечно, требуется максимально упорядоченная подача материала. Поэтому в нашей статье о том, что такое уравнение, мы не только дадим определение, но и приведём различные классификации уравнений с примерами.

Что такое уравнение: общие понятия

Итак, уравнение — это вид равенства с неизвестным, обозначаемым латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.Более подробно об этом вы можете прочитать в нашей статье Что такое корень уравнения, мы же продолжим разговор о самих уравнениях. Аргументами уравнения (или переменными) называются неизвестные, а решением уравнения называется нахождение всех его корней либо отсутствия корней.

Виды уравнений

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные.

  • Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия – 4 арифметических, а также возведение в степень и извлечение натурального корня.
  • Трансцендентным называется уравнение, в котором для нахождения корня используются неалгебраические функции: например, тригонометрические, логарифмические и иные.

Среди алгебраических уравнений выделяют также:

  • целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;
  • дробные — содержащие целые алгебраические выражения в числителе и знаменателе;
  • иррациональные — алгебраические выражения здесь находятся под знаком корня.

Заметим также, что дробные и иррациональные уравнения можно свести к решению целых уравнений.

Трансцендентные уравнения подразделяются на:

  • показательные — это такие уравнения, которые содержат переменную в показателе степени. Они решаются путём перехода к единому основанию или показателю степени, вынесением общего множителя за скобку, разложением на множители и некоторыми другими способами;
  • логарифмические — уравнения с логарифмами, то есть такие уравнения, где неизвестные находятся внутри самих логарифмов. Решать такие уравнения весьма непросто (в отличие от, допустим, большинства алгебраических), поскольку для этого требуется солидная математическая подготовка. Самое важное здесь — перейти от уравнения с логарифмами к уравнению без них, то есть упростить уравнение (такой способ удаления логарифмов называется потенцированием). Разумеется, потенцировать логарифмическое уравнение можно только в том случае, если они имеют тождественные числовые основания и не имеют коэффициентов;
  • тригонометрические — это уравнения с переменных под знаками тригонометрических функций. Их решение требует первоначального освоения тригонометрических функций;
  • смешанные — это дифференцированные уравнения с частями, принадлежащими к различным типам (например, с параболической и эллиптической частями или эллиптической и гиперболической и т.д.).

Что касается классификации по числу неизвестных, то здесь всё просто: различают уравнения с одним, двумя, тремя и так далее неизвестными. Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями 1-й степени, квадратные — 2-й, а кубические, соответственно, 3-й. Ну а теперь приведём примеры уравнений той или иной группы.

Примеры различных типов уравнений

Примеры алгебраических уравнений:

  • ax + b= 0
  • ax3+ bx2+ cx+ d= 0
  • ax4+ bx3+ cx2+ bx + a= 0
    (a не равно 0)

Примеры трансцендентных уравнений:

  • cos x = x lg x = x−5 2x= lgx+x5+40

Примеры целых уравнений:

  • (2+x)2 = (2+x)(55x-4) (x2-12x+10)4 = (3x+10)4 (4x2+3x-10)2=9x4

Пример дробных уравнений:

  • 15 x + — = 5x – 17 x

Пример иррациональных уравнений:

  • √2kf(x)=g(x)

Примеры линейных уравнений:

  • 2х+7=0 х - 3 = 2 - 4х 2х+3=5х+5 - 3х - 2

Примеры квадратных уравнений:

  • x2+5x−7= 0 3x2+5x−7= 0 11x2−7x+3 = 0

Примеры кубических уравнений:

  • x3-9x2-46x+120=0 x3- 4x2+ x + 6 = 0

Примеры показательных уравнений:

  • 5х+2= 125 3х·2х= 8х+3 3+4·3х-5 = 0

Примеры логарифмических уравнений:

  • log2x= 3 log3x= -1

Примеры тригонометрических уравнений:

  • 3sin2x + 4sin x cosx + cos2x = 2 sin(5x+π/4) = ctg(2x-π/3) sinx + cos2x + tg3x = ctg4x

Примеры смешанных уравнений:

  • logх(log9(4⋅3х−3))=1 |5x−8|+|2⋅5x+3|=13

Осталось добавить, что для решения уравнений различных типов применяются самые разные методы. Ну а чтобы решать практически любые уравнения, потребуются знания не только алгебры, но также и тригонометрии, причём нередко знания весьма глубокие.

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!