5.0 0.5 4 39

Признаки делимости

Елена Лукаш
Елена Лукаш
1 марта 2013
4394
Оцените:
Признаки делимости

Правила деления на числа от 1 до 10, а также на 11 и 25 были выведены, чтобы упростить процесс деления натуральных чисел. Те из них, которые оканчиваются на 2, на 4, на 6, на 8, на 0 считаются четными.

Что же такое признаки делимости?

По сути это алгоритм, который позволяет быстро определить, будет ли число делиться на то, которое задано заранее. В случае, когда признак делимости дает возможность выяснить еще и остаток от деления, его называют признаком равноостаточности.

Признак делимости на цифру 2

Число можно разделить на два, если последняя его цифра четная или ноль. В других случаях разделить не удастся.

Например:

52 734 делится на 2, потому как его последняя цифра 4 — то есть четная. 7 693 не делится на цифру 2, так как 3 — нечетная. 1 240 делится, потому что последняя цифра ноль.

Признаки делимости на 3

Цифре 3 кратны только те числа, у которых сумма делится на 3

Пример:

17 814 можно разделить на цифру 3, потому что общая сумма его цифр равна 21 и на 3 делится.

Признак делимости на цифру 4

Число можно разделить на 4, если последние две его цифры ноли или могут образовать число, кратное 4. Во всех других случаях разделить не получится.

Примеры:

31 800 можно разделить на 4, потому как в конце него два ноля. 4 846 854 не делится на 4 из-за того, что последние две цифры образуют число 54, а оно на 4 не делится. 16 604 поддается делению на 4, потому что последние две цифры 04 образуют число 4, которое делится на 4.

Признак делимости на цифру 5

5 кратны числа, в которых последняя цифра ноль или пять. Все другие — не делятся.

Пример:

245 кратно 5, потому что последняя цифра 5. 774 не кратно 5 из-за того, что последняя цифра четыре.

Признак делимости на цифру 6

Число можно разделить на 6, если его можно одновременно разделить на 2 и 3. Во всех других случаях — не делится.

Например:

216 можно разделить на 6, потому что оно кратно и двум и трем.

Признак делимости на 7

Кратно 7 число в том случае, если при вычитании последней удвоенной цифры из этого числа, но без нее (без последней цифры) получилось значение, которое можно поделить на 7.

Например, 637 кратно 7, потому что 63-(2·7)=63-14=49. 49 можно разделить на.

Признак делимости на цифру 8

Похож на признак делимости на цифру 4. Число можно разделить на 8, если три (а не две, как в случае с четверкой) последние цифры нули или могут образовать число, кратное 8. Во всех других случаях — не делится.

Примеры:

456 000 можно разделить на 8, потому как в конце него три нуля. 160 003 не получится разделить на 8, потому что три последние цифры образуют число 4, которое не кратно 8. 111 640 кратно 8, потому что последние три цифры образуют число 640, которое можно поделить на 8.

К сведению: можно назвать такие же признаки и для совершения деления на числа 16, 32, 64 и так далее. Но на практике они значения не имеют.

Признак делимости на 9

9-ке кратны те числа, сумму цифр которых можно разделить на 9.

Например:

Число 111 499 на 9 не делится, потому что сумму цифр (25) на 9 не разделить. Число 51 633 можно разделить на 9, потому что его сумма цифр (18) 9-ти кратна.

Признаки делимости на 10, на 100 и на 1000

На 10 можно разделить те числа, последняя цифра у которых 0, на 100 —те, у которых последние две цифры ноли, на 1000 — те, у которых последние три цифры ноли.

Примеры:

4500 можно поделить на 10 и 100. 778 000 кратно и 10, и 100, и 1000.

Теперь вы знаете, какие признаки делимости чисел существуют. Успешных вам вычислений и не забывайте о главном: все эти правила даны для упрощения математических расчетов.  

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!