5.0 0.5 4 43

Как привести к общему знаменателю?

Кира Добровольская
Кира Добровольская
19 февраля 2013
7745
Оцените:
Как привести к общему знаменателю?

Для того чтобы складывать или вычитать дроби, сначала их необходимо привести к общему знаменателю. Как это сделать? Для того чтобы найти наименьший общий знаменатель для дробей, необходимо выполнить следующие действия.

Схема приведения к общему знаменателю

  1. Нужно определить, какое будет наименьшее общее кратное для знаменателей дробей. Если Вы имеете дело со смешанным или целым числом, то его нужно сначала превратить в дробь, а уже потом определять наименьшее общее кратное. Чтобы целое число превратить в дробь, нужно в числителе записать само это число, а в знаменателе — единицу. Например, число 5 в виде дроби будет выглядеть так: 5/1. Чтобы смешанное число превратить в дробь, нужно целое число умножить на знаменатель и прибавить к нему числитель. Пример: 8 целых и 3/5 в виде дроби = 8x5+3/5 = 43/5.
  2. После этого необходимо найти дополнительный множитель, который определяется делением НОЗ на знаменатель каждой дроби.
  3. Последний шаг - умножение дроби на дополнительный множитель.

Важно запомнить, что приведение к общему знаменателю нужно не только для сложения или вычитания. Для сравнения нескольких дробей с разными знаменателями также необходимо сначала привести каждую из них к общему знаменателю. 

Приведение дробей к общему знаменателю

Для того чтобы понять, как привести к общему знаменателю дробь, необходимо разобраться в некоторых свойствах дробей. Так, важным свойством, используемым для приведения к НОЗ, является равенство дробей. Другими словами, если числитель и знаменатель дроби умножается на число, то в результате получает дробь, равная предыдущей. В качестве примера приведём следующий пример. Для того чтобы привести дроби 5/9 и 5/6 к наименьшему общему знаменателю, нужно выполнить следующие действия:

  1. Сначала находим наименьшее общее кратное знаменателей. В данном случае для чисел 9 и 6 НОК будет равно 18.
  2. Определяем дополнительные множители для каждой из дробей. Делается это следующим образом. Делим НОК на знаменатель каждой из дробей, в результате получаем 18 : 9 = 2, а 18 : 6 = 3. Эти числа и будут дополнительными множителями.
  3. Приводим две дроби к НОЗ. Умножая дробь на число, нужно умножить и числитель, и знаменатель. Дробь 5/9 можно умножить на дополнительный множитель 2, в результате чего получится дробь, равная данной, – 10/18. То же самое делаем со второй дробью: 5/6 умножаем на 3, в результате чего получаем 15/18.

Как видим из представленного выше примера, обе дроби были приведены к наименьшему общему знаменателю. Чтобы окончательно разобраться в том, как найти общий знаменатель, необходимо освоить еще одно свойство дробей. Оно заключается в том, что числитель и знаменатель дроби можно сократить на одно и то же число, которое называется общим делителем. Например, дробь 12/30 можно сократить до 2/5, если разделить ее на общий делитель – число 6.

Подписывайтесь на наши группы в социальных сетях - смешные статьи, картинки и факты!